Create a Poisson outcome from linear predictors
Source:R/effect_simulation.R
add_poisson_outcome.Rd
Generates a Poisson-distributed count outcome by summing effects, exponentiating to obtain rates, and drawing counts.
Usage
add_poisson_outcome(
data,
linear_col = "y_linear",
rate_col = "y_rate",
count_col = "y_count"
)
Examples
df <- tibble::tibble(.beta = 0.5, .u = rnorm(5), .error = rnorm(5))
add_poisson_outcome(df)
#> Error in data %>% dplyr::mutate(`:=`(!!linear_col, rowSums(dplyr::pick(all_of(dot_cols)))), `:=`(!!rate_col, exp(.data[[linear_col]])), `:=`(!!count_col, rpois(dplyr::n(), lambda = .data[[rate_col]]))): could not find function "%>%"