Compute the observed quantile value for each term within grouped simulation results
Source:R/model_evaluation.R
eval_quantile.RdComputes the specified quantile of x within each group, typically inside
evaluate_model_results() for simulation evaluation pipelines.
Arguments
- x
A numeric vector of estimates or statistics.
- term
A named numeric vector with quantile probabilities for each term. For example,
c("(Intercept)" = 0.05, x = 0.95). IfNULL(default), computes the median (0.5).- na.rm
Logical; whether to remove missing values when computing the quantile. Defaults to
FALSE.
Details
This function is designed to be used inside dplyr::summarise() within a grouped
tidyverse pipeline, typically after grouping by term.
If term is provided, the current grouping must include a term variable matching
the names in term. If a term in the group is not found in the provided term mapping,
the function will return NA with a warning.
Examples
library(dplyr)
library(purrr)
library(broom.mixed)
sim_models <- tibble(
id = 1:50,
model = map(1:50, ~ lm(mpg ~ wt, data = mtcars))
) |>
extract_model_results()
sim_models |>
filter(term == "wt") |>
group_by(term) |>
evaluate_model_results(
lower_quantile = eval_quantile(
estimate,
term = c("wt" = 0.05)
),
upper_quantile = eval_quantile(
estimate,
term = c("wt" = 0.95)
)
)
#> # A tibble: 1 × 7
#> term n_models mean_estimate mean_std.error power lower_quantile
#> <chr> <int> <dbl> <dbl> <dbl> <dbl>
#> 1 wt 50 -5.34 0.559 1 -5.34
#> # ℹ 1 more variable: upper_quantile <dbl>